Share:


Co-solvent transesterification of bitter almond oil into biodiesel: optimization of variables and characterization of biodiesel

    Abdelrahman B. Fadhil Affiliation
    ; Harith M. Mohammed Affiliation

Abstract

The influence of co-solvent on transesterification of one of non-edible feedstocks, Bitter Almond Oil (BAO) with methanol was investigated. Hexane and potassium hydroxide (KOH) were chosen as the co-solvent and the catalyst, respectively. The variables included in the optimization process were concentration of KOH, methanol to oil molar ratio, hexane to methanol volume ratio, temperature, time, type of co-solvent and type of alkali catalyst. BioDiesel (BD) with yield of 97.88…98.50 ester content % w/w were obtained using 0.60% KOH w/w, 5:1 methanol to oil molar ratio, 1:1 hexane to methanol volume ratio, 32 °C reaction temperature and 45 minutes of reaction. The Fourier Transform InfraRed (FTIR) spectroscopy and Thin Layer Chromatography (TLC) were used to ensure the conversion of BAO into BD. The fuel properties of the prepared BD were determined and found within the acceptable limits prescribed by ASTM D6751-15ce1 and EN 14214:2017. Moreover, properties of (biodiesel + petro-diesel) blends complied with the limits prescribed in the ASTM D7467-17 standards as well. It was concluded that the presence of co-solvent reduced the concentration of the catalyst, temperature, methanol to oil molar ratio and time required to produce maximum yield of BD comparing to non-solvent process. As a result, co-solvent transesterification is recommended for further application.

Keyword : bitter almond oil, co-solvent transesterification, biodiesel, fuel properties, analysis of biodiesel, blending evaluation

How to Cite
Fadhil, A. B., & Mohammed, H. M. (2018). Co-solvent transesterification of bitter almond oil into biodiesel: optimization of variables and characterization of biodiesel. Transport, 33(3), 686-698. https://doi.org/10.3846/16484142.2018.1457568
Published in Issue
Jul 10, 2018
Abstract Views
104
PDF Downloads
66
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abd Rabu, R.; Janajreh, I.; Honnery, D. 2013. Transesterification of waste cooking oil: process optimization and conversion rate evaluation, Energy Conversion and Management 65: 764–769. https://doi.org/10.1016/j.enconman.2012.02.031

Abu-Hamdeh, N. H.; Alnefaie, K. A. 2015. A comparative study of almond biodiesel-diesel blends for diesel engine in terms of performance and emissions, BioMed Research International 2015: 1–8. http://dx.doi.org/10.1155/2015/529808

Al-Hamamre, Z.; Yamin, J. 2014. Parametric study of the alkali catalyzed transesterification of waste frying oil for Biodiesel production, Energy Conversion and Management 79: 246–254. https://doi.org/10.1016/j.enconman.2013.12.027

Alhassan, Y.; Kumar, N.; Bugaje, I. M.; Pali, H. S.; Kathkar, P. 2014. Co-solvents transesterification of cotton seed oil into biodiesel: effects of reaction conditions on quality of fatty acids methyl esters, Energy Conversion and Management 84: 640–648. https://doi.org/10.1016/j.enconman.2014.04.080

Alptekin, E.; Canakci, M. 2010. Optimization of pretreatment reaction for methyl ester production from chicken fat, Fuel 89(12): 4035–4039. https://doi.org/10.1016/j.fuel.2010.04.031

Anastopoulos, G.; Zannikou, Y.; Stournas, S.; Kalligeros, S. 2009. Transesterification of vegetable oils with ethanol and characterization of the key fuel properties of ethyl esters, Energies 2(2): 362–376. https://doi.org/10.3390/en20200362

AOCS Cc 17-95(2017). AOCS Recommended Practice Cc 17-95: Soap in Oil Titrimetric Method. American Oil Chemists’ Society (AOCS).

ASTM D1747-09(2014). Standard Test Method for Refractive Index of Viscous Materials.

ASTM D2500-17a. Standard Test Method for Cloud Point of Petroleum Products and Liquid Fuels.

ASTM D4052-16. Standard Test Method for Density, Relative Density, and API Gravity of Liquids by Digital Density Meter.

ASTM D455-69(1995). Standard Specification for Milled Toilet Soap.

ASTM D4530-15. Standard Test Method for Determination of Carbon Residue (Micro Method).

ASTM D5555-95(2017). Standard Test Method for Determination of Free Fatty Acids Contained in Animal, Marine, and Vegetable Fats and Oils Used in Fat Liquors and Stuffing Compounds.

ASTM D664-17. Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titration.

ASTM D6751-15ce1. Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels.

ASTM D7467-17. Standard Specification for Diesel Fuel Oil, Biodiesel Blend (B6 to B20).

ASTM D93-16a. Standard Test Methods for Flash Point by Pensky-Martens Closed Cup Tester.

Atapour, M.; Kariminia, H. 2013. Optimization of biodiesel production from Iranian bitter almond oil using statistical approach, Waste and Biomass Valorization 4(3): 467–474. https://doi.org/10.1007/s12649-013-9203-5

Atapour, M.; Kariminia, H.-R. 2011. Characterization and transesterification of Iranian bitter almond oil for biodiesel production, Applied Energy 88(7): 2377–2381. https://doi.org/10.1016/j.apenergy.2011.01.014

Berchmans, H. J.; Morishita, K.; Takarada, T. 2013. Kinetic study of hydroxide-catalyzed methanolysis of Jatropha curcas–waste food oil mixture for biodiesel production, Fuel 104: 46–52. https://doi.org/10.1016/j.fuel.2010.01.017

Bindhu, C.; Reddy, J. R. C.; Rao, B. V. S. K.; Ravinder, T.; Chakrabarti, P. P.; Karuna, M. S. L.; Prasad, R. B. N. 2012. Preparation and evaluation of biodiesel from Sterculia foetida seed oil, Journal of the American Oil Chemists’ Society 89(5): 891–896. https://doi.org/10.1007/s11746-011-1969-7

Birla, A.; Singh, B.; Upadhyay, S N.; Sharma, Y. C. 2012. Kinetics studies of synthesis of biodiesel from waste frying oil using a heterogeneous catalyst derived from snail shell, Bioresource Technology 106: 95–100. https://doi.org/10.1016/j.biortech.2011.11.065

Candeia, R. A.; Silva, M. C. D.; Carvalho Filho, J. R.; Brasilino, M. G. A.; Bicudo, T. C.; Santos, I. M. G.; Souza, A. G. 2009. Influence of soybean biodiesel content on basic properties of biodiesel–diesel blends, Fuel 88(4): 738–743. https://doi.org/10.1016/j.fuel.2008.10.015

Carvalho, A. K. F.; Da Rós, P. C. M.; Teixeira, L. F.; Andrade, G. S. S.; Zanin, G. M.; De Castro, H. F. 2013. Assessing the potential of non-edible oils and residual fat to be used as a feedstock source in the enzymatic ethanolysis reaction, Industrial Crops and Products 50: 485–493. https://doi.org/10.1016/j.indcrop.2013.07.040

Cunha, A.; Feddern V; De Prá, M. C.; Higarashi M. M.; De Abreu P. G.; Coldebella, A. 2013. Synthesis and characterization of ethylic biodiesel from animal fat wastes, Fuel 105: 228–234. https://doi.org/10.1016/j.fuel.2012.06.020

Dias, J. M.; Alvim-Ferraz, M. C. M.; Almeida, M. F. 2009. Production of biodiesel from acid waste lard, Bioresource Technology 100(24): 6355–6361. https://doi.org/10.1016/j.biortech.2009.07.02

Ejikeme, P. M.; Anyaogu, I. D.; Egbuonu, C. A. C.; Eze, V. C. 2013. Pig-fat (lard) derivatives as alternative diesel fuel in compression ignition engines, Journal of Petroleum Technology and Alternative Fuels 4(1): 7–11. https://doi.org/10.5897/JPTAF10.001

EN 14214:2017. Liquid Petroleum Products – Fatty Acid Methyl Esters (FAME) for Use in Diesel Engines and Heating Applications – Requirements and Test Methods.

Encinar, J. M.; González, J. F.; Pardal, H.; Martínez, G. 2010. Transesterification of rapeseed oil with methanol in the presence of various co-solvents, in Proceedings Venice 2010: Third International Symposium on Energy from Biomass and Waste, Venice, Italy, 8–11 November 2010, 1–17.

Encinar, J. M; González, J. F; Rodríguez-Reinares, A. 2007. Ethanolysis of used frying oil. Biodiesel preparation and characterization, Fuel Processing Technology 88(5): 513–522. https://doi.org/10.1016/j.fuproc.2007.01.002

Encinar, J. M; Sánchez, N.; Martínez, G.; García, L. 2011. Study of biodiesel production from animal fats with high free fatty acid content, Bioresource Technology 102(23): 10907–10914. https://doi.org/10.1016/j.biortech.2011.09.068

Fadhil, A. B. 2013a. Biodiesel production from beef tallow using alkali-catalyzed transesterification, Arabian Journal for Science and Engineering 38(1): 41–47. https://doi.org/10.1007/s13369-012-0418-8

Fadhil, A. B. 2013b. Optimization of transesterification parameters of melon seed oil, International Journal of Green Energy 10(7): 763–774. https://doi.org/10.1080/15435075.2012.727200

Fadhil, A. B.; Abdulahad, W. S. 2014. Transesterification of mustard (Brassica nigra) seed oil with ethanol: Purification of the crude ethyl ester with activated carbon produced from deoiled cake, Energy Conversion and Management 77: 495–503. https://doi.org/10.1016/j.enconman.2013.10.008

Fadhil, A. B.; Ahmed, K. M; Dheyab M. M. 2017a. Silybum marianum L. seed oil: a novel feedstock for biodiesel production, Arabian Journal of Chemistry 10(1): S683–S690. https://doi.org/10.1016/j.arabjc.2012.11.009

Fadhil, A. B.; Alhayali, M. A.; Saeed, L. I. 2017b. Date (Phoenix dactylifera L.) palm stones as a potential new feedstock for liquid bio-fuels production, Fuel 210: 165–176. https://doi.org/10.1016/j.fuel.2017.08.059

Fadhil, A. B.; Ali, L. H. 2013. Alkaline-catalyzed transesterification of Silurus triostegus Heckel fish oil: optimization of transesterification parameters, Renewable Energy 60: 481–488. https://doi.org/10.1016/j.renene.2013.04.018

Fadhil, A. B.; Dheyab, M. M.; Saleh, L. A. 2014. Conversion of fish oil into biodiesel fuels via acid-base catalyzed transesterification, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 36(14): 1571–1577. https://doi.org/10.1080/15567036.2011.555441

Chang, F.; Hann, M. A.; Zhang, D.-J.; Li, H.; Zhou, Q.; Song, B.-A.; Yang, S. 2013. Production of biodiesel from non-edible herbaceous vegetable oil: Xanthium sibiricum Patr, Bioresource Technology 140: 435–438. https://doi.org/10.1016/j.biortech.2013.04.111

García, M.; Gonzalo, A.; Sánchez, J. L.; Arauzo, J.; Simoes, C. 2011. Methanolysis and ethanolysis of animal fats: a comparative study of the influence of alcohols, Chemical Industry and Chemical Engineering Quarterly 17(1): 91−97. https://doi.org/10.2298/CICEQ100224058G

Giwa, S. Ogunbona, C. 2014. Sweet almond (Prunus amygdalus “dulcis”) seeds as a potential feedstock for Nigerian Biodiesel Automotive Project, Revista Ambiente & Água 9(1): 37–45. http://dx.doi.org/10.4136/ambi-agua.1272

Guan, G.; Kusakabe, K.; Sakurai, N.; Moriyama, K. 2009. Transesterification of vegetable oil to biodiesel fuel using acid catalysts in the presence of dimethyl ether, Fuel 88(1): 81–86. https://doi.org/10.1016/j.fuel.2008.07.021

Gürü, M.; Artukoğlu, B. D.; Keskin, A.; Koca, A. 2009. Biodiesel production from waste animal fat and improvement of its characteristics by synthesized nickel and magnesium additive, Energy Conversion and Management 50(3): 498–502. https://doi.org/10.1016/j.enconman.2008.11.001

Gürü, M; Koca, A.; Can, Ö.; Çınar, C.; Şahin, F. 2010. Biodiesel production from waste chicken fat based sources and evaluation with Mg based additive in a diesel engine, Renewable Energy 35(3): 637–643. https://doi.org/10.1016/j.renene.2009.08.011

Guzatto, R.; Defferrari, D.; Reiznautt, Q. B.; Cadore, Í. R.; Samios, D. 2012. Transesterification double step process modification for ethyl ester biodiesel production from vegetable and waste oils, Fuel 92(1): 197–203. https://doi.org/10.1016/j.fuel.2011.08.010

Kafuku, G.; Mbarawa, M. 2010. Biodiesel production from Croton megalocarpus oil and its process optimization, Fuel 89(9): 2556–2560. https://doi.org/10.1016/j.fuel.2010.03.039

Knothe, G.; Steidley, K. R. 2005. Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components, Fuel 84(9): 1059–1065. https://doi.org/10.1016/j.fuel.2005.01.016

Lin, C.-Y.; Li, R.-J. 2009. Fuel properties of biodiesel produced from the crude fish oil from the soapstock of marine fish, Fuel Processing Technology 90(1): 130–136. https://doi.org/10.1016/j.fuproc.2008.08.002

Luu, P. D.; Truong, H. T.; Luu, B. V.; Pham, L. N.; Imamura, K.; Takenaka, N.; Maeda, Y. 2014. Production of biodiesel from Vietnamese Jatropha curcas oil by a co-solvent method, Bioresource Technology 173: 309–316. https://doi.org/10.1016/j.biortech.2014.09.114

Manique, M. C.; Faccini, C. S.; Onorevoli, B.; Benvenutti, E. V.; Caramão, E. B. 2012. Rice husk ash as an adsorbent for purifying biodiesel from waste frying oil, Fuel 92(1): 56–61. https://doi.org/10.1016/j.fuel.2011.07.024

Mohammed-Dabo, I. A.; Ahmad, M. S.; Hamza, A.; Muazu, K.; Aliyu, A. 2012. Cosolvent transesterification of Jatropha curcas seed oil, Journal of Petroleum Technology and Alternative Fuels 3(4): 42–51.

Morshed, M.; Ferdous, K.; Khan, M. R.; Mazumder, M. S. I.; Islam, M. A.; T. Uddin, M. T. 2011. Rubber seed oil as a potential source for biodiesel production in Bangladesh, Fuel 90(10): 2981–2986. https://doi.org/10.1016/j.fuel.2011.05.020

Nehdi, I. A.; Sbihi, H. M.; Al-Resayes, S. I. 2014. Rhazya stricta Decne seed oil as an alternative, non-conventional feedstock for biodiesel production, Energy Conversion and Management 81: 400–406. https://doi.org/10.1016/j.enconman.2014.02.038

Nuhu, S. K.; Kovo, A. S. 2015. Production and characterization of biodiesel from chicken fat, Scholarly Journal of Agricultural Sciences 5(1): 22–29.

Ong, H. C.; Silitonga, A. S.; Masjuki, H. H.; Mahlia, T. M. I.; Chong, W. T.; Boosroh, M. H. 2013. Production and comparative fuel properties of biodiesel from non-edible oils: Jatropha curcas, Sterculia foetida and Ceiba pentandra, Energy Conversion and Management 73: 245–255. https://doi.org/10.1016/j.enconman.2013.04.011

Peña, R.; Romero, R.; Martínez, S. L.; Ramos, M. J.; Martínez, A.; Natividad, R. 2009. Transesterification of castor oil: effect of catalyst and co-solvent, Industrial & Engineering Chemistry Research 48(3): 1186–1189. https://doi.org/10.1021/ie8005929

Pisarello, M. L.; Dalla Costa, B. O.; Veizaga, N. S.; Querini, C. A. 2010. Volumetric method for free and total glycerin determination in biodiesel, Industrial & Engineering Chemistry Research 49(19): 8935–8941. https://doi.org/10.1021/ie100725f

Ramírez-Verduzco, L. F; Rodríguez-Rodríguez, J. E; Jaramillo-Jacob, A. R. 2012. Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition, Fuel 91(1): 102–111. https://doi.org/10.1016/j.fuel.2011.06.070

Rashid, U.; Anwar, F. 2008. Production of biodiesel through optimized alkaline-catalyzed transesterification of rapeseed oil, Fuel 87(3): 265–273. https://doi.org/10.1016/j.fuel.2007.05.003

Rashid, U.; Anwar, F.; Knothe, G. 2009. Evaluation of biodiesel obtained from cottonseed oil, Fuel Processing Technology 90(9): 1157–1163. https://doi.org/10.1016/j.fuproc.2009.05.016

Rashid, U.; Rehman, H. A.; Hussain, I.; Ibrahim, M.; Haider, M. S. 2011. Muskmelon (Cucumis melo) seed oil: a potential non-food oil source for biodiesel production, Energy 36(9): 5632–5639. https://doi.org/10.1016/j.energy.2011.07.004

Reyero, I.; Arzamendi, G.; Zabala, S.; Gandía, LM. 2015. Kinetics of the NaOH-catalyzed transesterification of sunflower oil with ethanol to produce biodiesel, Fuel Processing Technology 129: 147–155. https://doi.org/10.1016/j.fuproc.2014.09.008

Sánchez, M.; Bergamin, F.; Peña, E.; Martinez, M.; Aracil, J. 2015. A comparative study of the production of esters from Jatropha oil using different short-chain alcohols: optimization and characterization, Fuel 143: 183–188. https://doi.org/10.1016/j.fuel.2014.11.064

Sbihi, H. M.; Nehdi, I. A.; Tan, C. P.; Al-Resayes, S. I. 2014. Production and characterization of biodiesel from Camelus dromedarius (Hachi) fat, Energy Conversion and Management 78: 50–57. https://doi.org/10.1016/j.enconman.2013.10.036

Shambhu, V. B.; Bhattacharya, T. K.; Nayak, L. K.; Das, S. 2013. Studies on characterization of raw Jatropha oil and its biodiesels with relevance of diesel, International Journal of Emerging Technology and Advanced Engineering 3(4): 48–54.

Silitonga, A. S.; Masjuki, H. H.; Mahlia, T. M. I.; Ong, H. C.; Chong, W. T. Boosroh, M. H. 2013a. Overview properties of biodiesel diesel blends from edible and non-edible feedstock, Renewable and Sustainable Energy Reviews 22: 346–360. https://doi.org/10.1016/j.rser.2013.01.055

Silitonga, A. S.; Ong, H. C.; Mahlia, T. M. I.; Masjuki, H. H.; Chong, W. T. 2013b. Characterization and production of Ceiba pentandra biodiesel and its blends, Fuel 108: 855–858. https://doi.org/10.1016/j.fuel.2013.02.014

Sinha, S.; Agarwal, A. K.; Garg, S. 2008. Biodiesel development from rice bran oil: transesterification process optimization and fuel characterization, Energy Conversion and Management 49(5): 1248–1257. https://doi.org/10.1016/j.enconman.2007.08.010

Sivakumar, P.; Sindhanaiselvan, S.; Gandhi, N. N.; Devi, S. S.; Renganathan S. 2013. Optimization and kinetic studies on biodiesel production from underutilized Ceiba Pentandra oil, Fuel 103: 693–698. https://doi.org/10.1016/j.fuel.2012.06.029

Suppalakpanya, K.; Ratanawilai, S. B.; Tongurai, C. 2010a. Production of ethyl ester from crude palm oil by two-step reaction with a microwave system, Fuel 89(8): 2140–2144. https://doi.org/10.1016/j.fuel.2010.04.003

Suppalakpanya, K.; Ratanawilai, S. B.; Tongurai, C. 2010b. Production of ethyl ester from esterified crude palm oil by microwave with dry washing by bleaching earth, Applied Energy 87(7): 2356–2359. https://doi.org/10.1016/j.apenergy.2009.12.006

Surya Abadi Ginting, M.; Azizan, M. T; Yusup, S. 2012. Alkaline in situ ethanolysis of Jatropha curcas, Fuel 93: 82–85. https://doi.org/10.1016/j.fuel.2011.08.062

Wyatt, V. T.; Hess, M. A.; Dunn, R. O.; Foglia, T. A.; Haas, M. J.; Marmer, W. N. 2005. Fuel properties and nitrogen oxide emission levels of biodiesel produced from animal fats, Journal of the American Oil Chemists’ Society 82(8): 585–591. https://doi.org/10.1007/s11746-005-1113-2

Zhang, L.; Sheng, B.; Xin, Z.; Liu, Q.; Sun, S. 2010. Kinetics of transesterification of palm oil and dimethyl carbonate for biodiesel production at the catalysis of heterogeneous base catalyst, Bioresource Technology 101(21): 8144–8150. https://doi.org/10.1016/j.biortech.2010.05.069