Share:


Smart grid technologies in electric power supply systems of public transport

Abstract

Nowadays the issue of electric energy saving in public transport is becoming a key area of interest which is connected both with a growth in environmental awareness of the society and an increase in the prices of fuel and electricity. It can be achieved by improving the usage of regenerative breaking. In 2016 the Przedsiębiorstwo Komunikacji Trolejbusowej (PKT, Trolleybus Transport Company) in Gdynia began practical implementation of Smart Grid solutions within its trolleybus network. These activities constitute an element of the project ELIPTIC, realised by PKT within the scientific research fund Horizon 2020. The first stage of implementing intelligent network solutions was completed in 2016, and further activities are planned for the next few years. This paper presents a review of Smart Grid solutions which can be implemented in urban traction supply systems, describes the PKT experience concerning the implementation of Smart Grid solutions in trolleybus network supply system to date.

Keyword : trolleybuses, smart grid systems, energy recuperation, electric traction, traction substation, energy savings

How to Cite
Bartłomiejczyk, M. (2018). Smart grid technologies in electric power supply systems of public transport. Transport, 33(5), 1144-1154. https://doi.org/10.3846/transport.2018.6433
Published in Issue
Dec 11, 2018
Abstract Views
26
PDF Downloads
17
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Altmann, M.; Elschner, K. 2009. Energy efficiency of traction power supply within the EU project Railenergy, Elektrische Bahnen 107(4–5): 184–191.

Angrisani, G.; Canelli, M.; Roselli, C.; Sasso, M. 2015. Integration between electric vehicle charging and micro-cogeneration system, Energy Conversion and Management 98: 115–126. https://doi.org/10.1016/j.enconman.2015.03.085

Bartłomiejczyk, M.; Połom, M. 2017. The impact of the overhead line’s power supply system spatial differentiation on the energy consumption of trolleybus transport: planning and economic aspects, Transport 32(1): 1–12. https://doi.org/10.3846/16484142.2015.1101611

Bartłomiejczyk, M.; Połom, M. 2016. Multiaspect measurement analysis of breaking energy recovery, Energy Conversion and Management 127: 35–42. https://doi.org/10.1016/j.enconman.2016.08.089

Cornic, D. 2010. Efficient recovery of braking energy through a reversible DC substation, in Electrical Systems for Aircraft, Railway and Ship Propulsion, 19–21 October 2010, Bologna, Italy, 1–9. https://doi.org/10.1109/ESARS.2010.5665264

Díez, A. E.; Díez, I. C.; Lopera J. A.; Bohorquez, A.; Velandia, E.; Albarracin, A.; Restrepo, M. 2012. Trolleybuses in Smart Grids as effective strategy to reduce greenhouse emissions, in 2012 IEEE International Electric Vehicle Conference, 4–8 March 2012, Greenville, SC, US, 1–6. https://doi.org/10.1109/IEVC.2012.6183213

Falvo, M. C.; Lamedica, R.; Bartoni, R.; Maranzano, G. 2011. Energy management in metro-transit systems: An innovative proposal toward an integrated and sustainable urban mobility system including plug-in electric vehicles, Electric Power Systems Research 81(12): 2127–2138. https://doi.org/10.1016/j.epsr.2011.08.004

Frilli, A.; Meli, E.; Nocciolini, D.; Pugi, L.; Rindi, A. 2016. Energetic optimization of regenerative braking for high speed railway systems, Energy Conversion and Management 129: 200–215. https://doi.org/10.1016/j.enconman.2016.10.011

Glotz-Richter, M.; Koch, H. 2016. Electrification of public transport in cities (Horizon 2020 ELIPTIC Project), Transportation Research Procedia 14: 2614–2619. https://doi.org/10.1016/j.trpro.2016.05.416

González-Gil, A.; Palacin, R.; Batty, P. 2013. Sustainable urban rail systems: Strategies and technologies for optimal management of regenerative braking energy, Energy Conversion and Management 75: 374–388. https://doi.org/10.1016/j.enconman.2013.06.039

González-Gil, A.; Palacin, R.; Batty, P.; Powell, J. P. 2014. A systems approach to reduce urban rail energy consumption, Energy Conversion and Management 80: 509–524. https://doi.org/10.1016/j.enconman.2014.01.060

Hamacek, Š.; Bartłomiejczyk, M.; Hrbáč, R.; Mišák, S.; Stýskala, V. 2014. Energy recovery effectiveness in trolleybus transport, Electric Power Systems Research 112: 1–11. https://doi.org/10.1016/j.epsr.2014.03.001

Hewings, D.; Palfreyman, T. 2013. Application of the smart grid to railway traction systems – vision and realisation, Elektrische Bahnen 111(6–7): 360–367.

Hrbac, R.; Kolar, V.; Mlcak, T. 2015. Distributed measurement system with GPS synchronisation and its use in electric traction, Elektronika ir elektrotechnika 21(6): 8–13. https://doi.org/10.5755/j01.eee.21.6.13750

Jarzebowicz, L.; Karwowski, K.; Kulesza, W. J. 2017. Sensorless algorithm for sustaining controllability of IPMSM drive in electric vehicle after resolver fault, Control Engineering Practice 58: 117–126. https://doi.org/10.1016/j.conengprac.2016.10.004

Judek, S.; Skibicki, J. 2009. Wyznaczanie parametrów elektrycznych trakcyjnego układu zasilania dla złożonych warunków ruchu przy wykorzystaniu programu PSpice, Przegląd Elektrotechniczny 85(12): 270–273. (in Polish).

Jiang, Y.; Liu, J.; Tian, W.; Shahidehpour, M.; Krishnamurthy, M. 2014. Energy harvesting for the electrification of railway stations: getting a charge from the regenerative braking of trains, IEEE Electrification Magazine 2 (3): 39–48. https://doi.org/10.1109/MELE.2014.2333561

Kolář, V.; Hrbáč, R.; Fukala, B. 2012. Zatížení trakční transformovny v závislosti na jízdě vlaků, 13th International Scientific Conference on Electric Power Engineering (EPE), 23–25 May 2012, Brno, Czech Republic, 1001–1004. (in Czech).

Kulesz, B. 2005. Rectifier transformers in electric traction substations – different designs, Transport 20(2): 66–72.

Nasr, S.; Iordache, M.; Petit, M. 2014. Smart micro-grid integration in DC railway systems, in IEEE PES Innovative Smart Grid Technologies, Europe, 12–15 October 2014, Istanbul, Turkey, 1–6. https://doi.org/10.1109/ISGTEurope.2014.7028913

Nicolau, M. S.; López, J.; Tapia, S.; Mera, J. M. 2018. Expert system using multi-objective optimization of the direct current railway power supply system, Transport 33(1): 131–142. https://doi.org/10.3846/16484142.2015.1108225

Niemann, T.; Nölkensmeier, S.; Steinbauer, J.; Schirmer, G. 2007. Pilotanwendung des kombinierten Schutz- und Steuergerat Siträs PRO bei der VAG Nürnberg, Elektrische Bahnen 105(3): 156–163. (in German).

Pearre, N. S.; Swan, L. G. 2016. Electric vehicle charging to support renewable energy integration in a capacity constrained electricity grid, Energy Conversion and Management 109: 130–139. https://doi.org/10.1016/j.enconman.2015.11.066

Połom, M.; Bartłomiejczyk, M. 2011. Trolleybusses in the city of Gdynia. A historical and geographical study, in: M. Bartłomiejczyk, M. Połom (Eds.). Determinants of Functioning of Trolleybus Transport in Selected Cities of the European Union, 119–139.

Połom, M.; Palmowski, T. 2009. Rozwój i funkcjonowanie komunikacji trolejbusowej w Gdyni, Pelplin, 152 s. (in Polish).

Tuballa, M. L.; Abundo, M. L. 2016. A review of the development of smart grid technologies, Renewable and Sustainable Energy Reviews 59: 710–725. https://doi.org/10.1016/j.rser.2016.01.011