Effectiveness analysis of UCAV used in modern military conflicts

    Mirosław Adamski   Affiliation


Analysis of contemporary armed conflicts shows that UCAV (Unmanned Combat Air Vehicle) is finding an increasing range of combat applications. The present study deals with constructional characteristics, tactical and technical parameters, equipment with reconnaissance sensors, electronic warfare equipment, weaponry, economic coefficient, combat experience, possessed additional benefits, systems and technologies, performance and application options in combat operations. Two UCAV (MALE − Medium Altitude Long Endurance) classes were analyzed based on Heron, Heron TP, MQ-1B Predator, MQ-1C Gray Eagle, Wing Loong, CH-4B and newly introduced MQ-9 Reaper ER, MQ-9 Reaper, P.1HH HammerHead, Mantis and (HALE − High Altitude Long Endurance) Global Yabhon, Yabhon-United 40 to determine their optimal effectiveness in combat operations. The article presents a general methodology for assessing the tactical effectiveness of selected UAV classes that are or can be used in modern armed conflicts. It can be useful for potential interested parties when making decisions regarding the purchase or application of an appropriate UAV depending on the capabilities and conditions of the defense strategy of a given country.

Keyword : aviation, missile, UAV, combat, analysis

How to Cite
Adamski , M. 2020. Effectiveness analysis of UCAV used in modern military conflicts. Aviation. 24, 2 (Jul. 2020), 66-71. DOI:
Published in Issue
Jul 8, 2020
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Adamski, M., & Rajchel, J. (2013). Bezzałogowe statki powietrzne (cz. 1). Wyższa Szkoła Oficerska Sił Powietrznych, Dęblin.

Adamski, M., Vogt, R., & Ćwiklak, J. (2014). Integrated navigation and pilotage systems. Paper presented at the IEEE Chinese Guidance, Navigation and Control Conference.

Biass, E. H., & Braybrook, R. (2012). Compedium drones 2012. Armada, 3.

Cwojdziński, L., & Adamski, M. (2014). Power units and power supply systems in UAV. Aviation, 18(1), 1−8.

Derbel, K., & Beneda, K. (2019). Linear dynamic mathematical model and identification of micro turbojet engine for Turbo-fan Power Ratio control. Aviation, 23(2), 54−64.

Hansen, B. (2009). Unmanned Aircraft Systems present & future capabilities. Washington.

Headquarters, United States Air Force. (2009). United States Air Force Unmanned Aircraft Systems Flight Plan 2009–2047. Washington.

Kulyk, M., Kharchenko, V., & Matiychyk, M. (2011). Justification of thrust vector deflection of twin-engine unmanned aerial vehicle power plants. Aviation, 15(1), 25–29.

Oktay, T., Uzun, M., & Kanat, O. O. (2018). Maximum lift/drag ratio improvement of TUAVs via small aerodynamic modifications. Aircraft Engineering and Aerospace Technology, 90, 1438−1444.

Skinder, T. (2005). ADCOM unveils new HALE UAV. Unmmaned Vehicles, 18.

Sochacki, A. (2014). Analiza porównawcza możliwości zastosowań w działaniach bojowych bezzałogowych statków powietrznych klasy UCAV (praca mgr). Wyższa Szkoła Oficerska Sił Powietrznych.

Valavanis, K. P. (2008). Advances in unmanned aerial vehicles: state of the art the road to autonomy. University of South Florida Tampa, USA.

Warwick, G., & Dickerson, L. (2012). Cooling down? Aviation Week & Space Technology, 174, 80−84.

Wise, K. A. (2003). First flight of the X-45A Unmanned Combat Air Vehicle (UCAV). Paper presented at the AIAA Atmospheric Flight Mechanics Conference and Exhibit.

Wyatt, E. C., & Hirschberg, M. J. (2003). Transforming the future battlefield: the DARPA/Air force Unmanned Combat Air Vehicle (UCAV) program. Paper presented at the AIAA International Air and Space Symposium and Exposition: the Next 100 Years.