Share:


Gradient-based optimization of spacecraft and aircraft thermal design

    Laurynas Mačiulis   Affiliation
    ; Rimantas Belevičius   Affiliation

Abstract

Steady-case thermal analysis plays an important role in dimensioning thermal control systems for spacecrafts and aircrafts. Usually a trial and error approach is used based on engineering judgement and experience. When thermal models become complex or there are conflicting thermal requirements, however, it becomes harder for an engineer to gain insight as to which design decisions will lead to better results. Numerical optimization, on the other hand, could provide a more robust approach for the thermal design of complex spacecraft or aircraft models. In this paper, we suggest a gradient-based multidisciplinary optimization of thermal models where the coupled derivatives of the multidisciplinary system are obtained with the adjoint method. We show that in the case of steady-state thermal analysis, there is an analytic solution of a partial derivatives of implicit heat-transfer equation that can be used to derive total derivatives of the system. We present a practical application of this method by solving a small interplanetary spacecraft thermal optimization problem consisting of one objective, 15 design variables, and 10 constraints. We found that by using gradient-based optimization with exact derivatives, the best results can be achieved by exploring the design space at multiple initial starting points without major computational overhead.

Keyword : thermal, aircraft, optimization, spacecraft, gradient, multidisciplinary, adjoint, heat-transfer, openMDAO

How to Cite
[1]
Mačiulis, L. and Belevičius, R. 2020. Gradient-based optimization of spacecraft and aircraft thermal design. Aviation. 24, 3 (Sep. 2020), 105-116. DOI:https://doi.org/10.3846/aviation.2020.13045.
Published in Issue
Sep 11, 2020
Abstract Views
76
PDF Downloads
36
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Baur, C., Khorenko, V., Siefer, G., Inguimbert, V., Park, S., Boizot, B., Bourgoin, Jacques C., Casale, M., Campesato, R., Schnell, H., Gerhard, A., Zanella, P., Ferrando, E., Reutenauer, X., Bongers, E., & Gras, A. (2017). Status of solar generator related technology development activities supporting the juice mission. E3S Web of Conferences, 16, 04005. https://doi.org/10.1051/e3sconf/20171604005

Bodie, M., Russell, G., McCarthy, K., Lucus, E., Zumberge, J., & Wolff, M. (2010). Thermal analysis of an integrated aircraft model. Paper presented at the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, Florida. https://doi.org/10.2514/6.2010-288

Chari, N. (2009). Spacecraft thermal design optimization (Doctoral dissertation). University of Toronto, Toronto, Canada.

Escobar, E., Diaz, M., & Zagal, J. C. (2016). Evolutionary design of a satellite thermal control system: Real experiments for a CubeSat mission. Applied Thermal Engineering, 105, 490–500. https://doi.org/10.1016/j.applthermaleng.2016.03.024

Falck, R. D., Chin, J. C., Schnulo, S. L., Burt, J. M., & Gray, J. S. (2017). Trajectory optimization of electric aircraft subject to subsystem thermal constraints. Paper presented at the 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Denver, CO. https://doi.org/10.2514/6.2017-4002

Forrester, A. I. J., Sóbester, A., & Keane, A. J. (2008). Engineering design via surrogate modelling. Wiley. https://doi.org/10.1002/9780470770801

Galski, R. L., De Sousa, F. L., Ramos, F. M., & Muraoka, I. (2007). Spacecraft thermal design with the generalized extremal optimization algorithm. In H. R. B. Orlande & M. J. Colaço (Eds.), Inverse Problems in Science and Engineering, Vol. 15, (pp. 61–75). Taylor & Francis Group. https://doi.org/10.1080/17415970600573924

Gilmore, D. G. (2002). Spacecraft thermal control handbook (Vol. I). Aerospace Press. https://doi.org/10.2514/4.989117

Gray, J. S., Hwang, J. T., Martins, J. R. R. A., Moore, K. T., & Naylor, B. A. (2019). OpenMDAO: An open-source framework for multidisciplinary design, analysis, and optimization. Structural and Multidisciplinary Optimization, 59(4), 1075–1104. https://doi.org/10.1007/s00158-019-02211-z

Heidt, H., Puig-Suari, J., Moore, A., Nakasuka, S., & Twiggs, R. (2000). CubeSat: A new generation of picosatellite for education and industry low-cost space experimentation. Paper presented at the 14th Annual AIAA/USU Conference on Small Satellites. Logan, UT. https://digitalcommons.usu.edu/small-sat/2000/All2000/32

Hwang, J. T., Lee, D. Y., Cutler, J. W., & Martins, J. R. R. A. (2013). Large-scale MDO of a small satellite using a novel framework for the solution of coupled systems and their derivatives. Paper presented at the Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Boston, MA. https://doi.org/10.2514/6.2013-1599

Hwang, J. T., Lee, D. Y., Cutler, J. W., & Martins, J. R. R. A. (2014). Large-scale multidisciplinary optimization of a small satellite’s design and operation. Journal of Spacecraft and Rockets, 51(5), 1648–1663. https://doi.org/10.2514/1.A32751

Hwang, J. T., & Martins, J. R. R. A. (2018). A computational architecture for coupling heterogeneous numerical models and computing coupled derivatives. ACM Transactions on Mathematical Software, 44(4), 1–39. https://doi.org/10.1145/3182393

Kraft, D. (1988). A software package for sequential quadratic programming. Forschungsbericht- Deutsche Forschungs- Und Versuchsanstalt Fur Luft-Und Raumfahrt. http://degenerateconic.com/wp-content/uploads/2018/03/DFVLR_FB_88_28.pdf

Lambe, A. B., & Martins, J. R. R. A. (2012). Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes. Structural and Multidisciplinary Optimization, 46(2), 273–284. https://doi.org/10.1007/s00158-012-0763-y

Martins, J. R. R. A., & Hwang, J. T. (2013). Review and unification of methods for computing derivatives of multidisciplinary computational models. AIAA Journal, 51(11), 2582–2599. https://doi.org/10.2514/1.J052184

Martins, J. R. R. A., & Lambe, A. B. (2013). Multidisciplinary design optimization: A survey of architectures. AIAA Journal, 51(9), 2049–2075. https://doi.org/10.2514/1.J051895

Meseguer, J., Pérez-Grande, I., & Sanz-Andrés, A. (2012). Spacecraft thermal control (1st ed.). Woodhead Pub. https://doi.org/10.1533/9780857096081.1

Sobieszczanski-Sobieski, J. (1990). Sensitivity of complex, internally coupled systems. AIAA Journal, 28(1), 153–160. https://doi.org/10.2514/3.10366

Stout, K. D., Masterson, R. A., & Miller, D. W. (2013). Design optimization of thermal paths in spacecraft systems. MIT. http://ssl.mit.edu/files/website/theses/SM-2013-StoutKevin.pdf

Wang, D., Naterer, G. F., & Wang, G. (2002). Adaptive response surface method for thermal optimization: Application to aircraft engine cooling system. Paper presented at the 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. St. Louis, MI. https://doi.org/10.2514/6.2002-3000