Share:


Analysis of small and medium business indicators in gross domestic product weight structure

Abstract

In the first part of the article  the status of corporate evaluation practices in crisis through traditional diagnostic model and  the  three  Altman  model  features  interpretations  on  the  following  key  business  indicators  are  described  to  measure  the  financial position of groups: profitability, short-and long-term solvency, operating efficiency and capital markets. In the second part of the article  the practical part of the five main economic sectors of business (wholesale and retail trade, manufacturing, real  estate,  rentals,  transportation,  storage  and  communications  and  construction)    for  the  financial  indicators  of  the  weight  structure of the GDP forecast is presented for describing models: quadratic trend function of the exponential trend function, S -curve trend function, and five ARIMA functions. In realistic calculations Statgraphics Plus v3.0 program features are used: One Variable Analysis, Multiple Sample Comparison and User-Specified Model Forecast. In determining the significance of the models developed and the accuracy, analysis was carried out on: information criteria for evaluation, autocorrelation and partial autocorrelation standard errors of assessment Box Pierce test, errors in matching white noise values, test statistics and P values for evaluation. The resulting prediction of the selected ARIMA (0, 2, 2) model and the corporate financial position forecast for 2012. and other findings are presented.


Smulkiojo ir vidutinio verslo finansinių rodiklių svorio bendrojo vidaus produkto struktūroje pokyčių analizė


Santrauka


Pirmoje straipsnio dalyje pateikiama įmonių būklės vertinimo praktika, pasitelkiant tradicinį krizių diagnozavimo modelį bei tris Altman modelio funkcijų interpretacijas, skiriant tokias pagrindines įmonių finansinės būklės vertinimo rodiklių grupes: pelningumo, trumpalaikio ir ilgalaikio mokumo, veiklos efektyvumo ir kapitalo rinkos. Antroje praktinėje straipsnio dalyje pateikiami penkių pagrindinių ekonominių sektorių įmonių (didmeninė ir mažmeninė prekyba; apdirbamoji gamyba; nekilnojamasis turtas; nuoma, transportas, sandėliavimas ir ryšiai bei statyba) finansinių rodiklių svorio BVP struktūroje prognozę aprašantys modeliai: kvadratinio trendo funkcija, eksponentinio trendo funkcija, S kreivės trendo funkcija bei penkios ARIMA funkcijos. Atliekant praktinius skaičiavimus naudotos Statgraphics plus v3.0 programos funkcijos: One variable analysis, Multiple sample comparison ir User-specified model forecast. Nustatant sukurtų modelių reikšmingumą ir tikslumą buvo atliktas: informacinių kriterijų vertinimas, autokoreliacijos ir dalinės autokoreliacijos standartinių paklaidų vertinimas, Box Pierce testas, paklaidų reikšmių atitiktis baltajam triukšmui, statistikos testo bei P reikšmių vertinimas. Prognozuoti pasirinktas ARIMA (0, 2, 2) modelis ir pateikiama finansinės įmonių būklės prognozė 2012 m. ir kitos išvados.


Reikšminiai  žodžiai:  finansiniai  rodikliai,  Altmano  modelis,  įmonių  būklės  vertinimas,  lyginamasis  svoris  BVP  struktūroje,  prognozavimas.

Keyword : financial indicators, Altman model, corporate state evaluation, GDP weight structure, forecasting

How to Cite
Švabovič, M., & Valkauskas, R. (2012). Analysis of small and medium business indicators in gross domestic product weight structure. Business: Theory and Practice, 13(3), 234-241. Retrieved from https://journals.vgtu.lt/index.php/BTP/article/view/8614
Published in Issue
Aug 31, 2012
Abstract Views
15
PDF Downloads
6