Share:


Multiple criteria assessment of apartment building performance for refurbishment purposes

    Laura Tupėnaitė Affiliation
    ; Artūras Kaklauskas Affiliation
    ; Igor Voitov Affiliation
    ; Vaidotas Trinkūnas Affiliation
    ; Nikolai Siniak Affiliation
    ; Renaldas Gudauskas Affiliation
    ; Jurga Naimavičienė Affiliation
    ; Loreta Kanapeckienė Affiliation

Abstract

The selection of buildings for refurbishment is a multi-objective problem and it should be based on integrated assessment of the current performance of the buildings. Accurate assessment allows the development of strategies for the optimisation of building performance and the selection of appropriate and most efficient refurbishment measures. This paper presents a computer-based integrated building performance assessment methodology based on the multiple-criteria approach. A case study from the Šiauliai district, Lithuania, illustrates the proposed methodology in use. The assessment results indicate what are the worst performing buildings and help with the selection of appropriate refurbishment measures and estimation of possible outcomes.

Keyword : apartment buildings, performance, multiple criteria assessment, COPRAS, refurbishment measures

How to Cite
Tupėnaitė, L., Kaklauskas, A., Voitov, I., Trinkūnas, V., Siniak, N., Gudauskas, R., Naimavičienė, J., & Kanapeckienė, L. (2018). Multiple criteria assessment of apartment building performance for refurbishment purposes. International Journal of Strategic Property Management, 22(4), 236-251. https://doi.org/10.3846/ijspm.2018.3679
Published in Issue
Jul 12, 2018
Abstract Views
46
PDF Downloads
40
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Baek, C.-H., & Park, S.-H. (2012). Changes in renovation policies in the era of sustainability. Energy and Buildings, 47, 485-496. https://doi.org/10.1016/j.enbuild.2011.12.028

Banaitienė, N., Banaitis, A., Kaklauskas, A., & Zavadskas, E. K. (2008). Evaluating the life cycle of a building: a multivariant and multiple criteria approach. Omega – International Journal of Management Science, 36(3), 429-441. https://doi.org/10.1016/j.omega.2005.10.010

Bayer, C., Gamble, M., Gentry, R., & Joshi, S. (2010). A guide to life cycle assessment of buildings. The American Institute of Architects.Biekša, D., Šiupšinskas, G., Martinaitis, V., & Jaraminienė, E. (2011). Energy efficiency challenges in multi-apartment building renovation in Lithuania. Journal of Civil Engineering and Management, 17(4), 467-475. https://doi.org/10.3846/13923730.2011.622408

Brown, N. W. O., Malmqvist, T., Bai, W., & Molinari, M. (2013). Sustainability assessment of renovation packages for increased energy efficiency for multi-family buildings in Sweden. Building and Environment, 61, 140-148. https://doi.org/10.1016/j.buildenv.2012.11.019

Caliskan, H. (2015). Thermodynamic and environmental analyses of biomass, solar and electrical energy options based building heating applications. Renewable and Sustainable Energy Reviews, 43, 1016-1034. https://doi.org/10.1016/j.rser.2014.11.094

Cegan, J. C., Filion, A. M., Keisler, J. M., & Linkov, I. (2017). Trends and applications of multi-criteria decision analysis in environmental sciences: literature review. Environment Systems and Decisions, 37(2), 123-133. https://doi.org/10.1007/s10669-017-9642-9

Cellura, M., Campanella, L., Ciulla, G., Guarino, F., Lo Brano, V., Nardi Cesarini, D., & Orioli, A. (2011). The redesign of an Italian building to reach net-zero energy performances: a case study of the SHC Task 40 – ECBCS Annex 52. ASHRAE Transactions, 117, Part 2, 331-339.

Chatterjee, P., Athawale, V. M., & Chakraborty, S. (2011). Materials selection using complex proportional assessment and evaluation of mixed data methods. Materials & Design, 32(2), 851-860. https://doi.org/10.1016/j.matdes.2010.07.010

Chau, C. K., Hui, W. K., Ng, W. Y., & Powell, G. (2012). Assessment of CO2 emissions reduction in high-rise concrete of-fice buildings using different material use options. Resources, Conservation and Recycling, 61, 22-34. https://doi.org/10.1016/j.resconrec.2012.01.001

Ciulla, G., Lo Brano, V., & Orioli, A. (2010). A criterion for the assessment of the reliability of ASHRAE conduction transferfunction coefficients. Energy and Buildings, 42(9), 1426-1436. https://doi.org/10.1016/j.enbuild.2010.03.012

Di Sivo, M., & Ladiana, D. (2011). Decision-support tools for municipal infrastructure maintenance management. Procedia Computer Science, 3, 36-41. https://doi.org/10.1016/j.procs.2010.12.007

Galvin, R. (2012). German Federal policy on thermal renovation of existing homes: a policy evaluation. Sustainable Cities and Society, 4, 58-66. https://doi.org/10.1016/j.scs.2012.05.003

Hopfe, C. J., Augenbroe, G. L. M., & Hensen, J. L. M. (2013). Multi-criteria decision making under uncertainty in building performance assessment. Building and Environment, 69, 81-90. https://doi.org/10.1016/j.buildenv.2013.07.019

Huang, I. B., Keisler, J., & Linkov, I. (2011). Multi-criteria decision analysis in environmental sciences: ten years of applications and trends. Science of The Total Environment, 409(19), 3578-3594. https://doi.org/10.1016/j.scitotenv.2011.06.022

Ibn-Mohammed, T., Greenough, R., Taylor, S., Ozawa-Meida, L., & Acquaye, A. (2014). Integrating economic considerations with operational and embodied emissions into a decision support system for the optimal ranking of building retrofit options. Building and Environment, 72, 82-101. https://doi.org/10.1016/j.buildenv.2013.10.018

Juan, Y.-K., Kim, J. H., Roper, K., & Castro-Lacouture, D. (2009). GA-based decision support system for housing condition assessment and refurbishment strategies. Automation in Construction, 18(4), 394-401. https://doi.org/10.1016/j.autcon.2008.10.006

Kabak, M., Köse, E., Kırılmaz, O., & Burmaoğlu, S. (2014). A fuzzy multi-criteria decision making approach to assess building energy performance. Energy and Buildings, 72, 382-389. https://doi.org/10.1016/j.enbuild.2013.12.059

Kaklauskas, A. (1999). Multiple criteria decision support of building life cycle (60 p.). Research Report presented for Habilitation. Vilnius: Technika.

Kaklauskas, A., Tupenaitė, L., Kanapeckienė, L., & Naimavičienė, J. (2013). Knowledge-based model for standard housing renovation. Procedia Engineering, 57, 497-503. https://doi.org/10.1016/j.proeng.2013.04.064

Kaklauskas, A., Zavadskas, E. K., & Galinienė, B. (2008). A building’s refurbishment knowledge-based decision support system. International Journal of Environment and Pollution, 35(2/3/4), 237-249. https://doi.org/10.1504/IJEP.2008.021358

Kaklauskas, A., Zavadskas, E. K., & Raslanas, S. (2005). Multi-variant design and multiple criteria analysis of building refurbishments. Energy and Buildings, 37(4), 361-372. https://doi.org/10.1016/j.enbuild.2004.07.005

Kaklauskas, A., Zavadskas, E. K., Raslanas, S., Ginevičius, R., Komka, A., & Malinauskas, P. (2006). Selection of low-e windows in retrofit of public buildings by applying multiple criteria method COPRAS: a Lithuanian case. Energy and Buildings, 38(5), 454-462. https://doi.org/10.1016/j.enbuild.2005.08.005

Kaklauskas, A., Zavadskas, E. K., Lepkova, N., Raslanas, S., Šliogerienė, J., Bartkienė, L., Pečiūrė, L., & Rimkuvienė, S. (2015). Multiple criteria analysis of the life cycle of the built environment (448 p.). Vilnius: Technika.

Kanapeckienė, L., Kaklauskas, A., Zavadskas, E. K., & Raslanas, S. (2011). Method and system for multi-attribute market value assessment in analysis of construction and retrofit projects. Expert Systems with Applications, 38(11), 14 196 -14207. https://doi.org/10.1016/j.eswa.2011.04.232

Kragh, J., & Rose, J. (2011). Energy renovation of single-family houses in Denmark utilising long-term financing based on equity. Applied Energy, 88(6), 2245-2253. https://doi.org/10.1016/j.apenergy.2010.12.049

Kurth, M. H., Larkin, S., Keisler, J. M., & Linkov, I. (2017). Trends and applications of multi-criteria decision analysis: use in government agencies. Environment Systems and Decisions, 37(2), 134-143. https://doi.org/10.1007/s10669-017-9644-7

Lasvaux, S., Favre, D., Périsset, B., Bony, J., Hildbrand, C., & Citherlet, S. (2015). Life Cycle Assessment of energy related building renovation: methodology and case study. Energy Procedia, 78, 3496-3501. https://doi.org/10.1016/j.egypro.2016.10.132

Lietuvos aplinkos apsaugos investicijų fondas. (2014). Greenhouse gas emissions reduction assessment methodology under the climate change special programme 2014. Retrieved from http://www.laaif.lt/lt/klimato-kaitos-specialioji-programa/ismetamu-siltnamio-efekta-sukelianciu-duju-kiekio-sumazinimo-vertinimo-metodika/ (in Lithuanian).

Linkov, I., & Moberg, E. (2012). Multi-criteria decision analysis: environmental applications and case studies. New York: CRC Press.

Mahapatra, K., Gustavsson, L., Haavik, T., Aabrekk, S., Svendsen, S., Vanhoutteghem, L., Paiho, S., & Ala-Juusela, M. (2013). Business models for full service energy renovation of single-family houses in Nordic countries. Applied Energy, 112, 1558-1565. https://doi.org/10.1016/j.apenergy.2013.01.010

Medineckienė, M., & Björk, F. (2011). Owner preferences regarding renovation measures – the demonstration of using multi-criteria decision makin. Journal of Civil Engineering and Management, 17(2), 284-295. https://doi.org/10.3846/13923730.2011.582380

Mlecnik, E., Kondratenko, I., Cré, J., Vrijders, J., Degraeve, P., van der Have, J. A., Haavik, T., Aabrekk, S. A., Grøn, M., Hansen, S., Svendsen, S., Stenlund, O., & Paiho, S. (2012). Collaboration opportunities in advanced housing renovation. Energy Procedia, 30, 1380-1389. https://doi.org/10.1016/j.egypro.2012.11.152

Mun, J. (Ed.). (2006). Modeling risk: applying Monte Carlo simulation, strategic real options, stochastic forecasting, and portfolio optimization. New Jersey: John Wiley & Sons, Inc.

Nemry, F., Uihlein, A., Colodel, C. M., Wetzel, C., Braune, A., Wittstock, B., Hasan, I., Kreißig, J., Gallon, N., Niemeier, S., & Frech, Y. (2010). Options to reduce the environmental impacts of residential buildings in the European Union –Potential and costs. Energy and Buildings, 42(7), 976-984. https://doi.org/10.1016/j.enbuild.2010.01.009

Nicolae, B., & George-Vlad, B. (2015). Life cycle analysis in refurbishment of the buildings as intervention practices in energy saving. Energy and Buildings, 86, 74-85. https://doi.org/10.1016/j.enbuild.2014.10.021

Ochoa, C. E., & Capeluto, I. G. (2015). Decision methodology for the development of an expert system applied in an adaptable energy retrofit façade system for residential buildings. Renewable Energy, 78, 498-508. https://doi.org/10.1016/j.renene.2015.01.036

Ouyang, J., Wang, C., Li, H., & Hokao, K. (2011). A methodology for energy-efficient renovation of existing residential buildings in China and case study. Energy and Buildings, 43, 2203-2210. https://doi.org/10.1016/j.enbuild.2011.05.005

Rasiulis, R., Ustinovichius, L., Vilutienė, T., & Popov, V. (2016). Decision model for selection of modernization measures: public building case. Journal of Civil Engineering and Management, 22(1), 124-133. https://doi.org/10.3846/13923730.2015.1117018

Preparation procedure for renovation (modernization) projects, approved by the Minister of Environment of the Republic of Lithuania, 10 November 2009, Order No. D1-677. Valstybės Žinios, 2009, No. 136-5963; 2011, No. 139-6563; 2014, No. D1-365) (in Lithuanian).

Rezaie, B., Dincer, I., & Esmailzadeh, E. (2013). Energy options for residential buildings assessment. Energy Conversion and Management, 65, 637-646. https://doi.org/10.1016/j.enconman.2012.09.008

Sakalauskas, L., & Žilinskas, K. (2006). Application of statistical criteria to optimality testing in stochastic programming. Technological and Economic Development of Economy, 12(4), 314-320.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., & Tarantola, S. (2008). Global sensitivity analysis. West Sussex: John Wiley & Sons, Ltd.

Šiožinytė, E., Antuchevičienė, J., & Kutut, V. (2014). Upgrading the old vernacular building to contemporary norms: multiple criteria approach. Journal of Civil Engineering and Management, 20(2), 291-298. https://doi.org/10.3846/13923730.2014.904814

STR 2.01.09: 2012 “Energy performance of buildings. The energy performance certification”. Lithuanian Standard.

Tupėnaitė, L. (2010). Multiple criteria assessment of the built environment renovation projects (PhD dissertation). Vilnius: Vilnius Gediminas Technical University.

Tupėnaitė, L., Zavadskas, E. K., Kaklauskas, A., Turskis, Z., & Seniut, M. (2010). Multiple criteria assessment of alternatives for built and human environment renovation. Journal of Civil Engineering and Management, 16(2), 257-266. https://doi.org/10.3846/jcem.2010.30

Uihlein, A., & Eder, P. (2010). Policy options towards an energy efficient residential building stock in the EU-27. Energy and Buildings, 42(6), 791-798. https://doi.org/10.1016/j.enbuild.2009.11.016

Uzomah, V., Scholz, M., & Almuktar, S. (2014). Rapid expert tool for different professions based on estimated ecosystem variables for retrofitting of drainage systems. Computers, Environment and Urban Systems, 44, 1-14. https://doi.org/10.1016/j.compenvurbsys.2013.10.008

Vilcekova, S., & Kridlova Burdova, E. (2014). Multi-criteria analysis of building assessment regarding energy performance using a life-cycle approach. International Journal of Energy and Environmental Engineering, 5, 83. https://doi.org/10.1007/s40095-014-0083-7

Zavadskas, E. K., & Antuchevičienė, J. (2007). Multiple criteria evaluation of rural building’s regeneration alternatives. Building and Environment, 42, 436-451. https://doi.org/10.1016/j.buildenv.2005.08.001

Zavadskas, E. K., & Kaklauskas, A. (1996). Pastatų sistemotechninis įvertinimas [Multicriteria evaluation of buildings]. Vilnius: Technika (in Lithuanian).

Zavadskas, E. K., Turskis, Z., & Kildienė, S. (2014). State of art overviews on MCDM/MADM methods. Technological and Economic Development of Economy, 20(1), 165-179. https://doi.org/10.3846/20294913.2014.892037

Zhang, X., & Wang, F. (2015). Life-cycle assessment and control measures for carbon emissions of typical buildings in China. Building and Environment, 86, 89-97. https://doi.org/10.1016/j.buildenv.2015.01.003