Share:


Research of relation of samplers frequency characteristics

Abstract

The approach to reduce the amplitude noise of a vertical channel of the sampling oscilloscope is presented in this paper. In general, the vertical channel of the sampling oscilloscope consists of a high-frequency sampling circuit and a relatively low-frequency sample transmission path along with a high bit resolution analogto-digital converter. The paper presents a method to improve the sensitivity of the vertical channel of a stroboscopic oscilloscope by extending the conventional channel architecture. The main vertical channel unit of the oscilloscope is a sampling device (sampler), which made of discrete elements and usually implemented using high frequency diodes. The sampler performs a transformation of the sample of the high-frequency signal under test into a low-frequency equivalent signal (otherwise called a balance impulse). In a conventional sampling device, this pulse is quantized once the amplitude is at its highest, thus achieving the best signal-to-noise ratio. The paper analyzes the operating parameters of the sampling device circuit and their influence on the output signal of the sampler. In this approach uses the fastest (15 MHz) high-resolution (18-bit) analog-to-digital converters currently on the market to reduce the amplitude noise of vertical channel based on conventional architecture. Our research has shown that it is possible to obtain an increase in the signal-tonoise ratio of almost 1.3 times.


Article in Lithuanian.


Stroboskopinio osciloskopo vertikaliojo kanalo triukšmo mažinimo metodas


Santrauka


Straipsnyje yra pateikiamas metodas, leidžiantis pagerinti stroboskopinio osciloskopo vertikaliojo kanalo jautrumą praplečiant įprastą kanalo architektūrą. Pagrindinis osciloskopo vertikaliojo kanalo mazgas yra strobavimo įtaisas (signalų maišytuvas), kuris sistemose, gaminamose iš diskrečiųjų elementų, dažniausiai įgyvendinamas taikant aukštadažnius diodus. Strobavimo įtaise vykdoma tiriamojo aušktadažnio signalo imties transformacija į žemadažnį ekvivalentinį signalą (kitaip vadinamas balanso impulsu). Įprastos architektūros strobavimo įtaise šis impulsas yra kvantuojamas vieną kartą, kai amplitudė esti didžiausia, taip pasiekiamas geriausias signalo ir triukšmo santykis. Straipsnyje yra analizuojami strobavimo įtaiso grandinės darbo parametrai ir jų įtaka įtaiso išėjimo signalui, taikant šiuo metu rinkoje sparčiausius (15 MHz) didelio skiltiškumo (18-bit) analoginius skaitmeninius keitiklius siekiama sumažinti įprastos architektūros vertikaliojo kanalo amplitudės triukšmą.


Reikšminiai žodžiai: stroboskopinis osciloskopas, strobavimo įtaisas, vertikalusis kanalas, analoginis skaitmeninis keitiklis, ekvivalentinio laiko strobavimo metodas.

Keyword : sampling oscilloscope, sampler, vertical channel, analog-to-digital converters, equivalent time sampling, noise reduction method

How to Cite
Tankeliun, T. (2021). Research of relation of samplers frequency characteristics. Mokslas – Lietuvos Ateitis / Science – Future of Lithuania, 13. https://doi.org/10.3846/mla.2021.15215
Published in Issue
Aug 19, 2021
Abstract Views
92
PDF Downloads
45
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Cassioli, D., & Mecozzi, A. (2009). Minimum-phase impulse response channels. IEEE Transactions on Communications, 57(12), 3529–3532. https://doi.org/10.1109/TCOMM.2009.12.0801082

Grove, W. M. (1966). Sampling for oscilloscopes and other RF systems Dc Througth X-Band. IEEE Transactions on Microwave Theory and Techniques, 14(12), 629–635. https://doi.org/10.1109/TMTT.1966.1126342

Hale, P. D., Wang, C. M., Williams, D. F., & Remley, K. A. (2005). Compensation of random and systematic timing errors in sampling oscilloscopes. IEEE Transactions on Instrumentation and Measurement, 55(6), 2146–2154.
https://doi.org/10.1109/TIM.2006.880270

Hale, P. D., Williams, D. F., & Remley, K. A. (2007). The sampling oscilloscope as a microwave instrument. IEEE Microwave Magazine, 8(4), 59–68.

Yang, K., Tian, S., & Song, J. (2013). A high speed random equivalent sampling method based on time-stretch [Conference presentation]. 2nd International Symposium on Instrumentation and Measurement (IMSNA). https://doi.org/10.1109/MMW.2007.383954

Kahrs, M. (2003). 50 years of RF and microwave sampling. IEEE Transactions on Microwave Theory and Techniques, 51(6), 1787–1805. https://doi.org/10.1109/TMTT.2002.806934

Kobayashi, K., Ems, S., DeMott, J., & Schnecker, M. (2006). Coherent interleaved sampling (United States patent application publication No. 2006/0177018A1). https://patentscope.wipo.int/search/en/detail.jsf?docId=US41697222&_fid=WO2006086257

Nader, C., Van Moer, W., Bjorsell, N., & Handel, P. (2013). Wideband radio frequency measurements: From instrumentation to sampling theory. IEEE Microwave Magazine, 14(2), 85–98. https://doi.org/10.1109/MMM.2012.2234643

Nelson, M. A., & Zivny, P. R. (2009). Sequential equivalent-time sampling with an asynchronous reference clock (United States patent application publication No. 2009/0237072A1). https://patentimages.storage.googleapis.com/c4/18/03/941c10f76e9b48/US20090237072A1.pdf

Remley, K. A., & Williams, D. F. (2003). Sampling oscilloscope models and calibrations. IEEE MTT-S International Microwave Symposium Digest, 3, 1507–1510. https://doi.org/10.1109/MWSYM.2003.1210422