Share:


RME CO-combustion with hydrogen in compression ignition engine: performance, efficiency and emissions / Slėginio uždegimo variklio energinių, efektyvumo ir deginių emisijos rodiklių tyrimas naudojant rapsų metilesterį ir vandenilį

Abstract

The article presents the test results of the single cylinder CI engine with common rail injection system operating on biofuel – Rapeseed Methyl Ester with addition supply of hydrogen. The purpose of this investigation was to examine the influence of the hydrogen addition to the biofuel on combustion phases, engine performance, efficiency, and exhaust emissions. HES was changed within the range from 0 to 44%. Hydrogen was injected into the intake manifold, where it created homogeneous mixture with air. Tests were performed at both fixed and optimal injection timings at low, medium and nominal engine load. After analysis of the engine bench tests and simulation with AVL BOOST software, it was observed that lean hydrogen – RME mixture does not support the flame propagation and efficient combustion. While at the rich fuel mixture and with increasing hydrogen fraction, the combustion intensity concentrate at the beginning of the combustion process and shortened the ignition delay phase. AVL BOOST simulation performed within the wide range of HES (16–80%) revealed that combustion intensity moves to the beginning of combustion with increase of HES. Decrease of CO, CO2 and smoke opacity was observed with increase of hydrogen amounts to the engine. However, increase of the NO concentration in the engine exhaust gases was observed.


Santrauka


Straipsnyje pateikti tyrimo rezultatai, gauti atlikus bandymą vieno cilindro slėginio uždegimo variklyje su biodegalais – rapsų metilesterį (RME) ir vandenilį. Biodegalai įpurškiami akumuliatorine įpurškimo sistema „Common rail“. Šio tyrimo tikslas – ištirti, kaip vandenilis veikia biodegalų degimą, variklio veikimą, jo efektyvumą ir deginių susidarymą. Vandenilio energinė dalis degimo mišinyje buvo keičiama nuo 0 iki 44 %. Vandenilis buvo tiekiamas įsiurbimo fazės metu įsiurbimo kanalu į degimo kamerą, kurioje jis, susimaišęs su oru, sudaro homogeninį mišinį. Bandymai buvo atliekami nekeičiant įpurškimo kampo, nustačius optimalų įpurškimo kampą esant žemai, vidutinei ir nominaliai variklio apkrovai. Išnagrinėjus variklio bandymų rezultatus ir sumodeliavu AVL BOOST programa, buvo pastebėta, kad, esant liesam vandenilio ir RME mišiniui, liepsnos plitimas yra lėtas, mišinys dega neveiksmingai. Tačiau riebus degalų mišinys ir padidinta vandenilio energijos dalis užtikrina degimo intensyvumą degimo proceso pradžioje ir sutrumpina uždegimo gaišties trukmę. AVL BOOST modeliavimas, atliktas plačiu vandenilio energijos dalies diapazonu (16–80 %), patvirtino teiginį, kad degimas tampa intensyvesnis degimo pradžioje dėl padidinto vandenilio kiekio. Didinant vandenilio kiekį, buvo pastebėta, kad išmetamosiose dujose sumažėjo CO, CO2 ir kietųjų dalelių, tačiau padidėjo NO koncentracija.


Reikšminiai žodžiai: vandenilis, RME, dyzelinas, slėginio uždegimo variklis, degimo procesas, deginių emisija, detonacija.

Keyword : hydrogen, RME, diesel fuel, CI engine, combustion, emission, abnormal combustion

Published in Issue
Dec 21, 2018
Abstract Views
79
PDF Downloads
67
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Aldhaidhawi, M., Chiriac, R., Bădescu, V., Descombes, G., & Podevin, P. (2017). Investigation on the mixture formation, combustion characteristics and performance of a Diesel engine fueled with Diesel, Biodiesel B20 and hydrogen addition. International Journal of Hydrogen Energy, 42, 16793-16807. https://doi.org/10.1016/j.ijhydene.2017.01.222

AVL BOOST v 2011.2. (2011). AVL BOOST Users Guide, Graz, Austria (297 p.).

Baltacioglu, M. K., Arat, H. T., Ozcanli, M., & Aydin, K. (2016). Experimental comparison of pure hydrogen and HHO (hydroxy) enriched biodiesel (B10) fuel in a commercial diesel engine. International Journal of Hydrogen Energy, 41, 8347-8353. https://doi.org/10.1016/j.ijhydene.2015.11.185

Barreto, L., Makihira, A., & Riahi, K. (2003). The hydrogen economy in the 21st century: a sustainable development scenario. International Journal of Hydrogen Energy, 28, 267-284. https://doi.org/10.1016/S0360-3199(02)00074-5

Barrios, C. C., Domínguez-Sáez, A., & Hormigo, D. (2017). Influence of hydrogen addition on combustion characteristics and particle number and size distribution emissions of a TDI diesel engine. Fuel, 199, 162-168. https://doi.org/10.1016/j.fuel.2017.02.089

Ghojel, J. I. (2010). Review of the development and applications of the Wiebe function: a tribute to the contribution of Ivan Wiebe to engine research. International Journal of Engines, 11. https://doi.org/10.1243/14680874JER06510

Grab-Rogalinski, K. & Szwaja, S. (2016). The combustion properties analysis of various liquid fuels based on crude oil and renewables. IOP Conference Series: Materials Science and Engineering, 148(1). https://doi.org/10.1088/1757-899X/148/1/012066

Hilbers, T. J., Sprakel, L. M. J., van den Enk, L. B. J., Zaalberg, B., van den Berg, H., & van der Ham, L. G. J. (2015). Green Diesel from Hydrotreated Vegetable Oil Process Design Study. Chemical Engineering Technology, 38(4), 651-657. https://doi.org/10.1002/ceat.201400648

Hoekman, S. K., Broch, A., Robbins, C., Ceniceros, E., & Natarajan, M. (2012). Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews, 16, 143-169. https://doi.org/10.1016/j.rser.2011.07.143

Jučas, P. (2006). Chemotologija. Akademija. LŽŪU Leidybos centras [Chemotology – Academy – LUA Publishing Center] (130 p.).

Knothe, G., Gerpen, J. V., & Krahl, J. (2005). The biodiesel handbook. AOCS Press Champaign, Illinois, USA. https://doi.org/10.1201/9781439822357

Knothe, G., & Razon, L. F. (2017). Biodiesel fuels. Progress in Energy and Combustion Science, 58(2017), 36–59. https://doi.org/10.1016/j.pecs.2016.08.001

Labeckas, G., Slavinskas, S., & Mažeika, M. (2014). The effect of ethanol–diesel–biodiesel blends on combustion, performance and emissions of a direct injection diesel engine. Energy Conversion and Management, 79, 698-720. https://doi.org/10.1016/j.enconman.2013.12.064

Murphy, D. J., & Hall, C. A. S. (2010). Year in review – EROI or energy return on (energy) invested. Annals of the New York Academy of Sciences, 1185(1), 102-118. https://doi.org/10.1111/j.1749-6632.2009.05282

Murray, J., & King, D. (2012). Oil’s tipping point has passed. Nature, 481(7382), 433-435. https://doi.org/10.1038/481433a

Rapsoila Certificate of Analysis No. 03/17. (2017). LST EN 14214:2014. Date of issue: 2017.03.17. SGS Klaipeda Ltd., UAB „Rapsoila“.

Raslavičius, L., Keršys, A., Starevičius, M., Sapragonas, J., & Bazaras, Ž. (2014). Biofuels, sustainability and the transport sector in Lithuania. Renewable and Sustainable Energy Reviews, 32, 328-346. https://doi.org/10.1016/j.rser.2014.01.019

Rimkus, A., Žaglinskis, J., Rapalis, P., & Skačkauskas, P. (2015). Research on the combustion, energy and emission parameters of diesel fuel and a biomass-to-liquid (BTL) fuel blend in a compression-ignition engine. Energy Conversion and Management, 106, 1109-1117. https://doi.org/10.1016/j.enconman.2015.10.047

Rimkus, A., Matijošius, J., Bogdevičius, M., Bereczky, A., & Török, A. (2018). An investigation of the efficiency of using O2 and H2 (hydrooxile gas-HHO) gas additives in a CI engine operating on diesel fuel and biodiesel. Energy, 152, 640-651. https://doi.org/10.1016/j.energy.2018.03.087

Rocha, H. M. Z., Pereira, R. S., Nogueira, M. F. N., Belchior, C. R. P., & Tostes, M. E. L. (2016). Experimental investigation of hydrogen addition in the intake air of compressed ignition engines running on biodiesel blend. International Journal of Hydrogen Energy, 12, 1-10.

Saravanan, N., Nagarajan, G., & Narayanasamy, S. (2017). Experimental investigation on performance and emission characteristics of DI diesel engine with hydrogen fuel. SAE Technique Paper 2007-01-17.

Schroeder, V., & Holtappels, K. (2004). Explosion characteristics of hydrogen-air and hydrogen-oxygen mixtures at elevated pressures. Bundesanstal für Materialforschung und Pruefung (BAM) Research report – Project SAFEKINEX, contract EVG1-CT-2002-00072.

Schroeder, V., Emonts, B., Janssen, H., & Schulze, H.-P. (2004). Explosion limits of hydrogen/oxygen mixtures at initial pressures up to 200 bar. Chemical Engineering Technology, 27(8), 847-851. https://doi.org/10.1002/ceat200403174

Senthil Kumar, M. (2003). Use of hydrogen to enhance the performance of a vegetable oil fueled compression ignition engine. International Journal of Hydrogen Energy, 28(10), 11, 43-54.

Silvestrini, A., Monni, S., Pregernig, M., Barbato, A., Dallemand, F. - J., Croci, E., et al. (2010). The role of cities in achieving the EU targets on biofuels for transportation: the cases of Berlin, London, Milan and Helsinki. Transportation Research Part A: Policy and Practice, 44, 403-417. https://doi.org/10.1016/j.tra.2010.03.014

Singh Bika, A., Franklin, L. M., & Kittelson, D. B. (2008). Emissions effects of hydrogen as a supplemental fuel with diesel and biodiesel. SAE Pap 2008-01-0648.

Szwaja, S., & Grab-Rogalinski, K. (2009). Hydrogen combustion in a compression ignition diesel engine. International Journal of Hydrogen Energy, 34, 4413-4421. https://doi.org/10.1016/j.ijhydene.2009.03.020

Verhelst, S., & Wallner, T. (2009). Hydrogen-fueled internal combustion engines. Science Direct: Progress in Energy and Combustion Science, 35, 490-527. https://doi.org/10.1016/j.pecs.2009.08.001

Yeliana, Y., Cooney, C., Worm, J., Michalek, D., & Naber, J. (2008). Wiebe function parameter determination for mass fraction burn calculation in an ethanol-gasoline fuelled SI engine. Journal of KONES Powertrain and Transport, 15(3), 2008.

Zhou, J. H., Cheung, C. S., & Leung, C. W. (2014). Combustion, performance, regulated and unregulated emissions of a diesel engine with hydrogen addition. Applied Energy, 126, 1-12. https://doi.org/10.1016/j.apenergy.2014.03.089